Contents

Executive Summary 2
1. Overview 4
 1.1. Overview 2009 to 2018 4
2. Production Output in 2018 6
3. Employment 9
 3.1. 10 Year Trend 9
 3.2. In 2018 10
 3.3. Regional Employment 12
4. Business Organisation; Production units 13
 4.1. 10 Year Trend 13
 4.2. 2017 to 2018 13
 4.3. Regionally 14
5. Main Segments 15
 5.1. Salmon 15
 5.2. Oysters 17
 5.3. Rope Mussels 20
 5.4. Seabed Cultured Mussels 22
 5.5. Other Sectors 24
6. Economic Performance 26
 6.1. 2009 to 2018 Trends 26
 6.2. Economic Performance by Segment 27
 6.2.1. Salmon 27
 6.2.2. Farmed Oyster 29
 6.2.3. Rope Mussel 30
 6.2.4. Seabed Cultured Mussel 32
7. Features 34
 7.1. IMTA in Irish Aquaculture 34
 7.2. Irish Farmed Seafood Receives a Prized International Accolade 35
 7.3. Recycling In Aquaculture; Farmed Oysters 36
References 37
Acknowledgements 37
Appendices 38
Aquaculture output for the 2009-2018 period has varied from 30,000 to 50,000 tonnes. It remains mainly export-driven, marine based, with a smaller land-based, freshwater aquaculture sector. Fluctuation in production value over this period is predominately due to production variations for salmon sea-farms, and to a lesser extent, the volume of bottom grown mussels produced. Overall, production value has seen a net gain from under €100 million in 2009 to €180 million in 2018; this despite limitations to output capacity, linked to licensing and consequent reductions in salmon production. This value growth was made possible by steady increases in the unit value of product driven by a growing recognition of Irish product quality and provenance through the achievement of international certifications such as MSC, and Organic Labels. Total turnover is predicted to continue to increase in 2019.

There has been a steady reduction in the number of businesses operating in some sectors of Irish aquaculture from 2009 to 2018. This consolidation process has been fuelled by foreign direct investment by a large multinational in the case of salmon farming and in the case of bottom grown mussels and oyster farming via investments from Dutch and French shellfish farmers. There is a move away from seasonal employment in the shellfish sector, with an increase in automation due to associated rising costs.

Employment over the 2009 to 2018 period, has fluctuated between 1,700 and 1,900. In 2018, 1,948 persons, equating to 1,077 Full Time Equivalents (FTEs) were directly employed. In 2018 employment increased slightly by 1%, when compared to 2017, despite it being a challenging year. Overall employment in 2018 was highest in the North (25%), followed by the Southeast (18%) and the West (15%). Employment is set to remain stable for 2019 and beyond given present production trends and steady market demand.

The main items of expenditure for the aquaculture industry are raw material costs, such as feed and juveniles, in the case of salmon farming. Energy, wages and salaries costs are common to the entire sector. Total costs in 2018 were estimated at €165 million resulting in a Gross Added Value (GVA) of €123 million equating to a GVA per FTE of €114 thousand. Both total costs and GVA are predicted to remain stable for 2019 with a slight 1% increase. Net profit has seen a reduction in 2018, due to a 10% decrease in total turnover and a 2% increase in total costs. Given current trends this is predicted to recover in 2019. Total investment and grant aid subsidies have seen a gradual decline since 2016 and currently stand at €6 million and €1.2 million respectively.

Salmon remains the most economically significant aquaculture sector in 2018 with production at 12,000 tonnes. Salmon in Ireland is exclusively produced to the EU Organic Certification Standard. It is mostly exported to the EU, with lesser volumes going to North America and the Near and Far East. Employment in this sector at primary production sites, increased by 18% despite output decreasing in 2018. There are up to 464 directly employed in the sector.
Farmed oyster (Gigas) output has continued to expand steadily over the 10 years, breaching the 10,000-tonne ceiling to achieve an output of 10,122 tonnes output in 2018. Overall value increased by 2.3% to €44.3 million. Employment remains a mix of full-time and part-time with a distinct move away from casual labour. Although France remains the main market from a volume of sales perspective, there has been a sharp increase in high value sales to markets in the far east. There is also a trend towards direct selling and value adding branding, moving away from bulk supply via a wholesale intermediary.

Rope mussel production, has varied between 8,500 and 10,000 tonnes over the ten-year period. In 2018, production was 9,192 tonnes, worth just under €6 million, up 7.5% and 3.3% respectively from 2017. There is a steady trend of consolidation in the sector driven by low margins and the need to achieve economies of scale. Consequently, there has been a decline in overall, particularly seasonal employment. The main market is France, with lower volumes going to Holland, UK and Italy with a small but growing home market.

The seabed cultured mussel sector has suffered from a number of poor fishing seasons in terms of wild seed availability and unit prices have also been quite low. These forces have reduced production by 3% in 2018 as compared to 2017. Currently the sector is comprised of 24 businesses, employing 108 persons directly, mainly full-time. It produced 4,700 tonnes, valued at over €6 million, for the Dutch and French fresh Markets in 2018.

In summary, the Irish aquaculture sector is stable and despite limitations in the growth of the volume of output it continues to grow in value terms. Its products are highly valued in the market place and it provides high value, year-round, jobs all around the coast. Shellfish licensing backlogs are set to be resolved by the end of 2019, which will underpin modest expansion in the output of oysters and mussels in the next five years. It is to be hoped that technology advances and some administrative streamlining will also impact positively on the salmon farming sector allowing some further increases in output to help meet the undoubted pent up market demand for Irish Organic Certified salmon.
1. Overview

1.1. Overview 2009 to 2018

The level of overall aquaculture output has followed a cyclical trend varying from 30,000 to 50,000 tonnes over 10 years as the outputs of salmon farms, historically the most economically important aquaculture sector and to a lesser extent, bottom grown mussel, fluctuated over the period. Overall, value has seen a net gain from under 100 million to 180 million, despite limitations to output. This was made possible by steady increases in unit value in conjunction with growing recognition of product quality. Aquaculture remains mainly export-driven, marine based, with a smaller land-based or freshwater aquaculture sector. Apart from the practice in native oyster culture, there is a move away from seasonal employment in the shellfish sector, due to associated rising costs.

Employment has oscillated between over 1,900 and 1,700 persons. Since 2018 employment is back to the levels it was at in 2009. Employment is biased towards male workers with female employment standing at 7% in 2018. The nationality of workers is shifting to reflect the growing proportion of non-nationals in the workforce.

The limitations to production growth remain unchanged and consist of; a lack of licensed capacity, distance to market, market home competitors, incidence and effects of pathogens or parasites and their importation via seed and the constraints and stresses upon stock grown in the highly dynamic, exposed and unpredictable environment and, climate of Irish sites.

Figures 1-3: Aquaculture Output by Volume and Value, 2009 to 2018

Figure 1: Irish Aquaculture Production – 10 Year Trend
Figure 2: Finfish & Shellfish Production Volumes – 10 Year Trend

Figure 3: Finfish & Shellfish Production Value – 10 Year Trend
2. Production Output in 2018

The National Seafood Survey indicates that overall output decreased by more than 19% by volume and 13.5% by value from 2017 to 2018.

The trends are predominantly influenced by the finfish sector which was down 33% by volume and 14% by value. The sectoral trend is specifically set by Atlantic salmon production which is following a cyclical trend of production based on alternating heavy and light inputs of smolts, necessitated by a lack of capacity. The less severe drop in overall value is due to an increase in salmon unit value. Other finfish production, mainly Rainbow trout, has also contracted in output and companies continue to be amalgamated.

The shellfish sector output experienced a less dramatic downturn with a decrease of 7.3% by volume and 1.5% by value, the latter again partially offset by modest increases in unit value. Bottom-grown mussel production decline was the main trend driver for shellfish. However, the rope mussel and farmed oyster sub-sectors showed modest production increase over 2018 with rope production increasing to 9,200 tonnes and farmed oyster breaking the 10,000 tonne mark for the first time. Minor shellfish culture production has declined. Native oyster production has received a major setback with the increased availability of French oysters depressing export unit value, while the home market has switched to Farmed (Pacific oyster) consumption owing to the recent historical lack of Edulis (native) supply.

Employment has remained stable, even increasing slightly by 22 persons despite a challenging year bringing the estimated total to 1,948 persons, with an FTE of 1,077 in 2018.

The number of production units has also remained stable at 282, although these are controlled by fewer businesses; 238 from 248 as these continue to amalgamate in 2018.

2.1. Irish Finfish Production 2018

Figures 4-6: Irish Finfish Production 2018

Figure 4: Irish Finfish Production 2018 Volume (Tonnes)

<table>
<thead>
<tr>
<th>Category</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmon/ova/smolt</td>
<td>2%</td>
</tr>
<tr>
<td>Salmon Volume</td>
<td>94%</td>
</tr>
<tr>
<td>Freshwater Trout</td>
<td>4%</td>
</tr>
</tbody>
</table>

Figure 5: Irish Finfish Production 2018 Value (€’000)

<table>
<thead>
<tr>
<th>Category</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmon/ova/smolt</td>
<td>4%</td>
</tr>
<tr>
<td>Salmon Volume</td>
<td>95%</td>
</tr>
<tr>
<td>Freshwater Trout</td>
<td>1%</td>
</tr>
</tbody>
</table>
2.2. Shellfish Output 2018

Figures 7-9: Shellfish Output 2018

Figure 7: Irish Shellfish Production Volume 2018 (Tonnes)
- Rope Mussel: 38%
- Bottom Mussel: 19%
- Pacific Oyster: 42%
- Native Oyster: 1%

Figure 8: Irish Shellfish Production Value 2018 (€’000)
- Rope Mussel: 10%
- Bottom Mussel: 11%
- Pacific Oyster: 76%
- Native Oyster: 3%
Figure 9: Shellfish Production Trend

-40% -35% -30% -25% -20% -15% -10% -5% 0% 5% 10%

Rope Mussel Bottom Mussel Pacific Oyster Native Oyster Shellfish Other

Volume Value

Figure 10: Regional Distribution of Aquaculture Output (rounded figures)

<table>
<thead>
<tr>
<th>Region</th>
<th>Value</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>North</td>
<td>€38,127,300</td>
<td>6,067t</td>
</tr>
<tr>
<td>Northwest</td>
<td>€43,920,200</td>
<td>4,067t</td>
</tr>
<tr>
<td>Northeast</td>
<td>€3,940,800</td>
<td>2,160t</td>
</tr>
<tr>
<td>South</td>
<td>€21,619,300</td>
<td>9,465t</td>
</tr>
<tr>
<td>Southeast</td>
<td>€22,988,800</td>
<td>7,264t</td>
</tr>
<tr>
<td>West</td>
<td>€23,977,200</td>
<td>3,826t</td>
</tr>
<tr>
<td>Southwest</td>
<td>€24,415,000</td>
<td>4,357t</td>
</tr>
<tr>
<td>National</td>
<td>€178,988,600</td>
<td>37,206</td>
</tr>
</tbody>
</table>
3. Employment

3.1. 10 Year Trend

Employment in 2009 was over 1,900 persons and after some fluctuations has returned to this level in 2018, having dropped to lows between 1,700 and 1,800 persons in 2012. Full-time equivalent employment (FTE) meanwhile varied from just over 900 to 1,050 in the same period. Native oyster employment may have been over-estimated due to lack of data obtained.

Female employment level, over this time, has remained relatively static, ranging from 120 to 150 or from 6.4% to 8.2 % of total employed.

The Shellfish sector was the biggest employer over the period and included the greatest proportion of part-time or seasonal work. The Finfish sector by contrast, provided mainly full-time employment and the best average wage, in excess of €40,000 annually.

Figures 11-12: Employment 10 Year Trend

Figure 11: Aquaculture Employment 2009 to 2018
3.2. In 2018

Employment has remained stable from 2017, even increasing slightly by 22 persons despite a challenging year, estimated as 1,948 persons, with an FTE of 1,077 in 2018. Full-time employment has increased in proportion to part-time and seasonal. Employment costs are noted as rising causing a shift towards taking on more permanent staff in the shellfish sector.

Figures 13-15: Employment in 2018
Figure 14: Employment Levels in 2018

- Total Shellfish: 1,700
- Total Finfish: 200
- Total Aquaculture: 2,500

Figure 15: Male v Female Employment in 2018

- Male: 92%
- Female: 8%
3.3. Regional Employment

Employment is concentrated along the west, south east and north-east coasts particularly in counties Donegal, Cork, Mayo, Galway, Louth and Waterford. There is also employment created by several inland freshwater units.

Figure 16: Map of Full-Time Equivalent Employment by Region
4. Business Organisation; Production units

Most of the businesses, and their production units, are small, employing less than 5 persons and generating €250,000 or less annually.

4.1. 10 Year Trend

There has been a decline in the number of the smallest Production Unit (PU) size category due to pressures to operate businesses full-time and to move towards more capital-intensive production. This can clearly be seen in the Rope-mussel sector and to a lesser extent in the Oyster sector.

Figure 17: Business Size Category – 10 Year Trend

4.2. 2017 to 2018

The 10 Year declining trend in smaller PU numbers continued in 2018 with an increase in the greater than 10 persons employed category. This reflects an amalgamating trend within the shellfish sector of small PUs into larger enterprises.
4.3. Regionally

Production units are concentrated along the West, South east and North east coasts with a small number of freshwater finfish units inland, in counties Roscommon, Offaly, Tipperary, Carlow and Kilkenny. There is gradual amalgamation of units within the Trout, Rope mussel and Farmed oyster segments though new farms are also starting up within the Farmed oyster segment.

Production units are concentrated in bays of intense shellfish production, particularly in the bays Dungarvan (FLAG SEast), Bantry (FLAG South), Dingle (FLAG SWest), Killary (FLAG West), Clew (FLAG NWest) and The Bays of Donegal (FLAG North).

Figure 19: Regional Distribution of Production Units
5. Main Segments

5.1. Salmon

Output
Atlantic salmon on-grown production output declined in 2018, following a cyclical trend of production based on alternating heavy and light inputs of smolts, necessitated by a lack of capacity. Output was down 34.7% in volume to just under 12,000 tonnes. Whole-round value was down 14.2 % to € 114.5 million. Smolt production fell to 220 tonnes worth € 5.1 million indicating an increase in unit value due to scarcity of the product.

Figure 20: Salmon 10 Year Production

![Salmon 10 Year Production Chart](chart.png)
Employment and Production Units

Employment in the salmon sector, mainly full time, increased by 30 persons, despite output decrease, with a total of 230 in direct employment at primary production sites and up to 464 directly employed in the salmon sector as a whole.

Salmon on-grown production occurs in sea-cages, at 34 sites of 15 production units, owned by 5 companies, off the coasts of Donegal, Mayo, Galway, Kerry and Cork. These are supplied by smolt production units located at several land-based facilities. All stages of the production cycle occur within the Irish industry.

Figure 21: Salmon Production Total Employment v FTE, 2009 to 2018

Structures and Production Cycle

Offshore-exposed circular plastic cages of 20,000 metre cube capacity, are used. The production cycle is from 9 to 18 months depending on market size requirements. Smolts are transferred in spring to on-growing sites, then to finishing sites in preparation for harvesting. Maximum national production capacity is around 20,000 tonnes, though in practice, normally less, in keeping with strict organic stocking requirements. Capacity is restricted by available licensed sites.

The sector is capital intensive, with the greatest cost normally being feed which stood at €19.6 million in 2018. Average wage within the sector in 2018 was estimated at €52,896.

Markets

The consumer-ready product, mainly whole-round or head-on-gutted, is grown to exclusively organic certification standards and is exported to diverse markets; to the EU, North America and the Near and Far East. The less severe drop in overall value for 2018 is due to an increase in salmon unit value which now stands at an average of €9.55 for whole-round.

Mortalities

Despite the stresses that accompany production during extended periods of warm weather, no mortality spikes were recorded in 2018.
5.2. Oysters

Output

The Farmed Pacific or Gigas oyster (Crassostrea gigas) sector continued to expand modestly by 2.4% in volume in 2018, breaking the 10,000-tonne ceiling to 10,122 tonnes. Overall value increased by 2.3% to €44.3 million, unit value nationally remains unchanged at €4,380 per tonne (Triploids plus Diploids).
Production Units & Employment

Total employment in the oyster sector, mainly on Gigas oyster farms, is over 1,300 persons. This equals 642 FTEs. Just under half of this workforce is in full time employment. Production is carried out across 154 production units, run by 139 businesses and are distributed along the coast with concentrations of production in the South east and North west regions.

![Figure 24: Gigas Oysters – Total v FTE Employment – 10 Year Trend](image)

Current Structures

Intertidal production predominantly uses trestle bags but SEPA baskets, floating/suspended baskets and shelved baskets are increasingly used throughout the licensed area. Small seed (6-8mm) is mainly imported from French and UK hatcheries. Bigger, half-grown, stock is bought from sites within Ireland, specializing in earlier stages of the production cycle and some 2-3mm stock is supplied by local hatcheries. The full production cycle is from 3 to 5 years though an increasing number of units specialise in part of the cycle, reducing stock turnover time. The current maximum capacity is just over 10,000 tonnes and is restricted by available licensed ground.

The Market

The market for Irish grown oysters is mainly the EU, mostly France taking 74% of total export volume with smaller volumes going to The Netherlands, the UK, Germany Spain and Italy. There are also buyers from Canada, The United Arab Emirates and South east Asia. The latter, principally China and Hong Kong, took in 6.73% of total exported volume (553 tonnes). Increasingly, home-branded products are being sold directly to the retail market.

In 2018, 7,570 tonnes (74%) was sold consumer ready at sizes from 45 to over 150 grams, though mainly sizes 3s to 1s were sold. The value ranged from €2,200 per tonne to €6,000 per tonne, depending on the bay and ploidy. The remaining 2,622 tonnes, mainly 30-64g half-grown oysters, were sold to other finishing farms from €2,200 to €4,500 euros/tonne.

Triploid output makes up 89.1% of the output, with a unit value of €4,477 per tonne. Diploid output had an average unit value of €3,386 per tonne. In 2018, 8,359 tonnes making up all grades and ploidies were exported of which 1,921, 2,032, 2,003 and 1,329 tonnes respectively were half-grown, Size 3s, size 2s and Size 1 or greater.
Mortality

Mortality in 2018 varied considerably from bay to bay within regions. The most severely affected regions were locations of the North west, South east and North east. Karenia blooms had severe effects on some seed batches off the West coast while localised occurrence of Vibrio based mortalities were reported for larger stock in the North west.

The most affected areas were bays of mid-Donegal, Clew Bay, the Shannon Estuary, Waterford Harbour and Carlingford Lough (40-80%). The bays of Galway, Dingle, Roaring Water Bay and Bannow had relatively lighter losses (<20%).
5.3. Rope Mussels

Output

Rope mussel (Mytilus edulis) production increased in 2018 by 7.5% in volume to 9,192 tonnes and 3.3% in overall value to €5.94 million. There was a slight decrease in average unit value from €673 euros per tonne in 2017 to €646 per tonne in 2018 for the fresh and processed markets.
Employment and Production Units

The number of businesses operating was 55 with total employed of 228. Employment continues to decline as the sector streamlines into larger units with specialist crews and equipment servicing a greater number of sites. There is a move away from seasonal employment due to rising associated costs which also adds to the decrease in overall employment.

Seed is sourced mainly from collectors situated close to on-growing areas in the spring or from collected rock seed. Growth cycles vary from 1 to 2.5 years depending on the bay. Fresh product is mainly 55-70 mm shell length (110-80 pieces per kilogram).

Production is concentrated in the South and South west; Cork and Kerry and to a lesser extent in the North west, from Killary harbour to Mulroy Bay. While red tide closures obstruct continuous production flow, the biggest impediment to the sectors growth remain the reliance on those markets that have a large home production stock, leading to periods of over-supply.

![Figure 29: Rope Mussel Total v FTE Employment – 10 Year Trend](image)

Markets

The unit value for the fresh market varied considerably from bay to bay, from €490 per tonne to €764 per tonne depending on market timing and stock condition at time of harvesting window. France took 60% of fresh exports, while The Netherlands, UK and Italy took up smaller volumes.

23% of the total volume went to processors for an average €598 per tonne which was then mainly exported. It is unclear from current surveying technique what proportion of total output went to the home market though localised attempts to expand this are occurring for example from Mulroy and Roaring Water Bay.

Structures

Suspended, Head-Rope systems used varies by location. Continuous new Zealand rope is favoured by larger operators in such locations as Bantry, Killary and Roaring Water Bays. Swedish Strap is used in Kenmare Bay while traditional rope is used among the smaller operators in Roaring Water Bay. Recycled pergolari material is used in Killary Harbour.

The maximum capacity is 15,000 tonnes though this is rarely reached due to restrictions in harvesting opportunity and market trends.
Figure 30: Regional Distribution of Rope Mussel Output

5.4. Seabed Cultured Mussels

Output

Seabed Cultured or Bottom mussel production declined in 2018 by 37% by volume, standing at 4,697 tonnes with a decrease in value of 31% to €6 million, with an average unit value of €1,283. Unit value ranged from €800 to €1,900 per tonne.

Figure 31: Bottom Mussel 10 Year Production
Production Cycle

Wild seed is transferred from 20mm shell length (600 pieces per kilogram) from the Irish Sea or from local seed beds and harvested from 1 to 2.5 years later at 55 to 70 mm shell length (80 to 110 pieces per kilogram). The smaller size product (all are sold fresh) may be on-grown or sold as consumer-ready while the Dutch market favour the larger sizes for consumption.

The maximum capacity is 3,000 licenced hectares plus order ground which has held up to a maximum stock of 30,000 tonnes. Production is limited by stock management issues, rather than licensed ground capacity.

Employment and Production Units

The sectors businesses, recently decreased in number by several poor seed settlement years continue in the face of overall declining seed stocks. Despite the seed shortage, poor unit prices, and debilitating uncertainty both in terms of seed management and political issues, the segment shows remarkable resilience and continues with 24 businesses, employing 108 persons directly, mainly full-time.

Figure 32: Bottom Mussel Total v FTE Employment – 10 Year Trend
Locations

The sector operates currently in Carlingford Lough, Wexford Harbour Castlemaine Harbour and Lough Foyle. The industry has not, thus far, recovered in the North-West. The industry continues to depend almost exclusively on the level of annual wild seed settlement for its stock input, while cost effective alternative sources are pursued.

Figure 33: Regional Distribution of Seabed Cultured Mussel Output

Markets

Product is exclusively exported, mainly to the Netherlands and France with the Dutch taking 55% and the French 41% of exports in 2018.

5.5. Other Sectors

Three hatcheries, based on the West coast, supply Oyster seed to local companies, though much of the seed needs to be imported from France and Britain. The Trout sector, based in the South east, has amalgamated farther with a slight decrease in volume, offset by a slight increase in unit value. A new land-based finfish company has commenced Rainbow trout, Perch and Pondweed production on Bord na Mona property on the Shannon catchment. Seaweed aquaculture, as opposed to the wild harvesting sector, remains a minor component of national output and with the other minor sectors, including Scallop, Perch, abalone and urchin species, remain below 60 tonnes in total output in 2018.
Figure 34: Location of Trout, Perch, Hatcheries and other Operations by County

- **Smolt Hatcheries**: Donegal, Cork, Galway, Wexford, Tipperary (220t)
- **Perch**: Offaly, Tipperary (<1t)
- **Seaweed**: Cork, Kerry, Mayo (40t)
- **Landbased Shellfish**: Sligo, Galway, Clare, Kerry (57t)
- **Trout**: Cork, Kilkenny, Wicklow (557t)
6. Economic Performance

6.1. 2009 to 2018 Trends

Economic data indicates that total costs in Irish aquaculture are a major challenge to profitability. The years 2013 and 2015 were unprofitable but the industry had shown recovery from 2016. Provisional data for 2018 shows that overall there was a decline in net profit.

Figures 35-36: Aquaculture Economic Performance, 2009 to 2018

Figure 35: Aquaculture; Income v Costs over 10 years
6.2. Economic Performance by Segment

6.2.1. Salmon

The sector has managed to remain profitable throughout most of the 10 Year period, experiencing a non-profitable year in 2013. Income has increased from over €60 million in 2009 to over €160 million in 2017 but costs have also risen in the same period. Though the margin of profitability from costs seems to have increased from 2015 to 2017, the net profit indicator shows a more mixed performance.

Figure 37: On-grown Salmon; Income v Costs 2009 to 2018
Figure 38: On-grown Salmon 10 Year Economic Performance Trend

Figure 39: On-grown Salmon Costs in 2017

- Wages and salaries: 8%
- Imputed value of unpaid labour: 0%
- Energy costs: 1%
- Raw material costs: Livestock costs: 7%
- Raw material costs: Feed costs: 30%
- Repair and maintenance: 6%
- Other operational costs: 45%
- Depreciation of capital: 3%
6.2.2. Farmed Oyster

There has been variability in the margin between costs and income over a mainly profitable period, with 2013 to 2015 being the most difficult years. The overall trend has been an increase in margins (>20 million in 2018) and profitability (£16.7 million in 2018) from 2009 to 2018. The largest costs are labour and seed supply.

Figures 40-42: Farmed Oyster; Economic Performance, 2009 to 2018

Figure 40: Farmed Oysters; Income v Costs, 2009 to 2018

Figure 41: Farmed Oyster 10 Year Economic Performance Trend
6.2.3. Rope Mussel

Although there are no significant seed supply or feed costs, the margins in this sector are relatively tight, with high labour costs and poor unit value of product determining profitability from year to year.

Figure 43: Rope Mussel; Income v Costs, 2009 to 2018
Figure 44: Rope Mussel 10 Year Economic Performance Trend

- Gross Added Value (GVA)
- Total income
- EBIT
- Operating Capital Flow (OCF)
- Net Profit

Figure 45: Rope Mussel; Costs in 2017

- Wages and salaries: 47%
- Imputed value of unpaid labour: 8%
- Energy costs: 3%
- Raw material costs: Livestock costs: 6%
- Raw material costs: Feed costs: 0%
- Repair and maintenance: 7%
- Other operational costs: 8%
- Depreciation of capital: 21%
6.2.4. Seabed Cultured Mussel

These have been difficult years for the Bottom mussel sector where the costs of running and maintaining a boat and crew and securing seed have eroded profit margins. This is particularly evident in 2010 and 2014-2016.

Figure 46: Bottom Mussels; Income v Costs, 2009 to 2018

Figure 47: Bottom Mussels; 10 Year Economic Performance Trend
Figure 48: Bottom Mussels; Costs in 2017

- Wages and salaries: 31%
- Imputed value of unpaid labour: 0%
- Energy costs: 11%
- Raw material costs: Livestock costs: 12%
- Raw material costs: Feed costs: 0%
- Repair and maintenance: 18%
- Other operational costs: 13%
- Depreciation of capital: 15%
7. Features

7.1. IMTA in Irish Aquaculture

Integrated Multi-Trophic Aquaculture (IMTA) provides the by-products, including waste, from one aquatic species as inputs (fertilizers, food) for another. Farmers combine fed aquaculture (e.g., fish, shrimp) with inorganic extractive (e.g., seaweed) and organic extractive (e.g., shellfish) aquaculture to create balanced systems for environment remediation, economic stability (improved output, lower cost, product diversification and risk reduction) and social acceptability (better management practices).

An example of this in the Irish marine context would be a salmon, mussel-rope seaweed combination production system. Anecdotal evidence in support of this system comes from bays such as Lough Swilly and Killary Harbour where the removal and absence of salmon stock was considered to have a negative effect on mussel meat yield. Trials of this combination are ongoing in Bantry Bay.

IMTA development is also being investigated at freshwater sites including at cutaway peatland in County Offaly. The system is a freshwater IMTA, producing perch and trout in an innovative organic system using duckweed and algae. The farm is powered by wind energy generated at Mount Lucas windfarm. The project is being carried out by Bord na Mona in collaboration with BIM, Goatsbridge Trout Ltd, UCC and Keywater Fisheries Ltd. The project is part funded by the European Maritime and Fisheries Fund.
7.2. A good News Story, Irish Farmed Seafood Receives a Prized International Accolade!

On the 20 February 2019 The Global Sustainable Seafood Initiative (GSSI) provided formal recognition of the BIM Certified Quality Aquaculture (CQA) scheme for Irish aquaculture products. The highly prestigious GSSI recognition shows that the BIM Farm Standard (Issue 1, Revision 1, November 2018) is in alignment with all applicable Essential Components of the GSSI Global Benchmark Tool (version 1.0, 8 October 2015).

This is a great outcome for farmed Irish Seafood as it ‘future proofs’ the provenance of our products and gives our producers access to the premium markets.

The BIM Certified Quality Aquaculture (CQA) scheme is only the eighth seafood certification scheme, and only the fourth aquaculture certification, to be benchmarked against GSSI’s Global Benchmark Tool and to achieve recognition. The BIM Certified Quality Aquaculture (CQA) scheme is also the first government run scheme to achieve this much sought-after recognition.

GSSI is a benchmark platform that brings partners together from across the seafood sector worldwide to share knowledge and drive change by coming up with solutions to challenges in the sector.

It was set up, under the aegis of the UN FAO to bring more clarity into the marketplace due to the growing number of seafood certification schemes and to ensure consumer confidence in certified seafood, helping to make purchasing decisions more efficient by offering greater choice and driving down costs, while at the same time promoting environmental sustainability.

GSSI used a number of key reference documents as its basis. These included the FAO Code of Conduct for Responsible Fisheries (CCRF), the FAO Guidelines for Ecolabelling of Fish and Fishery Products from Marine/Inland Capture Fisheries and the FAO Technical Guidelines for Aquaculture Certification (FAO Guidelines) as the foundation to create a Global Benchmark Tool for seafood certification schemes. Through its Global Benchmark Tool GSSI works towards its collective objective to minimize the overall environmental impact of how we catch, grow and deliver seafood to meet a growing global demand.

The GSSI Tool is made up of 3 parts: a Benchmark Process, a Benchmark Framework with Essential and Supplementary Components and a Result. Seafood Certification schemes must go through an exhaustive 7-step Benchmark Process to be recognized by GSSI. The intention behind carrying out the Benchmarking exercise is for a seafood certification scheme to achieve equivalence and public recognition by GSSI as meeting the benchmark standard.

In turn the holders of the BIM CQA standards gain added value from participation as a result of GSSI “equivalence” status and thus stay ahead of emerging market demands so as to allow them to “choose the right customers” and occupy the top value niches in the marketplace.
How it all fits together

Organic Salmon Production in Ireland

The production of organic salmon has been a success story of the organic movement in Ireland with 100% of the total salmon production now certified as organic under the EU Organic Regulations. Due to its geographical location the hydrography off the west coast of Ireland provides unique salmon producing conditions: the fish are grown in exposed marine sites, experiencing stronger tidal currents and higher wave energy due to gentle sloping continental shelf. This in turn produces distinctive firm textured flesh. On average, the organic salmon has more than 10,000 cubic meters of water to swim around in. The stocking densities in Ireland’s organic salmon production are very low (10kg/m3) compared to other producing nations: maximum of 1% fish to 99% seawater, which effectively means that every two fish share 1,000 litres of pure seawater. This fact along with strong marine currents contribute to a very high-quality product and today, Irish Organic Salmon is widely recognised internationally as a premium product of consistent high quality, with a long history of export to leading markets.

7.3. Recycling in Aquaculture; Farmed Oysters

During 2019, BIM were involved in a study to find an environmentally sound and cost effective long-term solution for end of life oyster bags. The bags, comprised of High-density Polyethylene (HDPE) mesh can have a usable lifespan of up to 10 years. Several oyster farmers are storing these bags in anticipation of an alternative solution to landfill becoming available. They prove difficult to recycle due to fouling and salt from their time in the marine environment. One of the major manufacturers is currently recycling bags, but energy and costs associated with cleaning and transport may impact the viability of this as a sustainable solution for the Irish sector. It is possible that bags could be repurposed rather than recycled. We are excited to explore opportunities to develop circular solutions for this problematic waste stream.
The Waste Pyramid for an End of Life HDPE Oyster Bag

- **REDUCE & RE-USE**: Oyster growers reduce the overall number of bags purchased by re-using for up to 10 years. Bags are frequently mended to maximise lifespan.

- **RE-PURPOSE**: A key focus of the study will be on ways to re-purpose end of life bags.

- **RECYCLE**: HDPE is highly recyclable but cleaning and transport may impact viability.

- **RECOVER**: HDPE does have a calorific value.

- **DISPOSE**: Landfill is the current least favoured option.

References

Acknowledgements

The ESSU would like to thank all specialists and regionally based staff who contribute annually to the collection of data presented in the annual aquaculture survey. The unit wishes to thank in particular; Vera Flynn, Damien Toner and Grainne Devine for their feature contributions.
Appendices
Appendix 1: Aquaculture Production Outputs by Volume (Tonnes) and Value (000’s €), 2009 to 2018, Using Census Survey Estimates

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rope Mussel</td>
<td>9,330</td>
<td>9,116</td>
<td>10,147</td>
<td>8,544</td>
<td>9,834</td>
<td>8,169</td>
<td>10,318</td>
<td>9,760</td>
<td>8,558</td>
<td>9,192</td>
</tr>
<tr>
<td>Relaid Rope Mussel Seed</td>
<td></td>
</tr>
<tr>
<td>Bottom Mussel</td>
<td>17,521</td>
<td>13,168</td>
<td>12,524</td>
<td>6,484</td>
<td>5,527</td>
<td>3,206</td>
<td>5,697</td>
<td>6,475</td>
<td>7,491</td>
<td>4,697</td>
</tr>
<tr>
<td>Pacific Oyster</td>
<td>6,488</td>
<td>7,051</td>
<td>7,700</td>
<td>7,366</td>
<td>8,181</td>
<td>8,888</td>
<td>9,073</td>
<td>9,681</td>
<td>9,834</td>
<td>10,122</td>
</tr>
<tr>
<td>Native/Edulis Oyster</td>
<td>358</td>
<td>219</td>
<td>272</td>
<td>247</td>
<td>459</td>
<td>555</td>
<td>474</td>
<td>380</td>
<td>237</td>
<td>247</td>
</tr>
<tr>
<td>Clam</td>
<td>162</td>
<td>180</td>
<td>150</td>
<td>30</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Scallop</td>
<td>55</td>
<td>59</td>
<td>47</td>
<td>45</td>
<td>37</td>
<td>26</td>
<td>50</td>
<td>33</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Shellfish Other*</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>11</td>
<td>43</td>
<td>74</td>
<td>74</td>
<td>54</td>
<td>96</td>
<td>97</td>
</tr>
<tr>
<td>Shellfish</td>
<td>33,914</td>
<td>29,795</td>
<td>30,842</td>
<td>22,727</td>
<td>24,085</td>
<td>20,918</td>
<td>25,686</td>
<td>26,383</td>
<td>26,220</td>
<td>24,358</td>
</tr>
<tr>
<td>Salmon ova/smolt*</td>
<td>196</td>
<td>358</td>
<td>489</td>
<td>451</td>
<td>473</td>
<td>488</td>
<td>527</td>
<td>610</td>
<td>528</td>
<td>220</td>
</tr>
<tr>
<td>Salmon Volume</td>
<td>12,210</td>
<td>15,691</td>
<td>12,195</td>
<td>12,440</td>
<td>9,125</td>
<td>9,368</td>
<td>13,137</td>
<td>16,299</td>
<td>18,342</td>
<td>11,984</td>
</tr>
<tr>
<td>Sea reared Trout</td>
<td>478</td>
<td>434</td>
<td>600</td>
<td>180</td>
<td>180</td>
<td>80</td>
<td>98</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Freshwater Trout</td>
<td>896</td>
<td>668</td>
<td>601</td>
<td>601</td>
<td>728</td>
<td>728</td>
<td>705</td>
<td>705</td>
<td>647</td>
<td>557</td>
</tr>
<tr>
<td>Others**</td>
<td>62</td>
<td>64</td>
<td>56</td>
<td>50</td>
<td>80</td>
<td>78</td>
<td>45</td>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Finfish</td>
<td>13,842</td>
<td>17,215</td>
<td>13,941</td>
<td>13,722</td>
<td>10,586</td>
<td>10,741</td>
<td>14,512</td>
<td>17,629</td>
<td>19,517</td>
<td>12,761</td>
</tr>
<tr>
<td>Aquaculture Volume (t)</td>
<td>47,756</td>
<td>47,010</td>
<td>44,783</td>
<td>36,449</td>
<td>34,671</td>
<td>31,659</td>
<td>40,198</td>
<td>44,012</td>
<td>45,737</td>
<td>37,119</td>
</tr>
<tr>
<td>Seaweed</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>42</td>
<td>70</td>
<td>70</td>
<td>50</td>
<td>41</td>
<td>40</td>
</tr>
</tbody>
</table>
Irish Aquaculture Production 2009-2018 VALUE (€’000)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rope Mussel</td>
<td>4,923</td>
<td>6,617</td>
<td>5,537</td>
<td>4,969.00</td>
<td>5,395</td>
<td>5,736</td>
<td>6,473</td>
<td>6,760</td>
<td>5,760</td>
<td>5,942</td>
</tr>
<tr>
<td>Bottom Mussel</td>
<td>13,213</td>
<td>9,192</td>
<td>10,691</td>
<td>6,157.00</td>
<td>9,173</td>
<td>4,182</td>
<td>6,016</td>
<td>5,859</td>
<td>8,830</td>
<td>6,024</td>
</tr>
<tr>
<td>Pacific Oyster</td>
<td>13,685</td>
<td>20,579</td>
<td>28,566</td>
<td>34,217.00</td>
<td>37,466</td>
<td>39,242</td>
<td>35,206</td>
<td>41,903</td>
<td>43,033</td>
<td>44,304</td>
</tr>
<tr>
<td>Native Oyster</td>
<td>1,455</td>
<td>877</td>
<td>1,294</td>
<td>1,204.00</td>
<td>2,441</td>
<td>2,862</td>
<td>2,600</td>
<td>2,259</td>
<td>1,374</td>
<td>1,783</td>
</tr>
<tr>
<td>Clam</td>
<td>1,093</td>
<td>1,155</td>
<td>903</td>
<td>159.00</td>
<td>80</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Scallop</td>
<td>386</td>
<td>347</td>
<td>297</td>
<td>210.00</td>
<td>194</td>
<td>133</td>
<td>234</td>
<td>158</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>Shellfish Other</td>
<td>29</td>
<td>28</td>
<td>36</td>
<td>60.00</td>
<td>82</td>
<td>235</td>
<td>528</td>
<td>383</td>
<td>342</td>
<td>347</td>
</tr>
<tr>
<td>Salmon ova/smolt</td>
<td>1,874</td>
<td>2,012</td>
<td>3,468</td>
<td>5,687.00</td>
<td>3,261</td>
<td>3,203</td>
<td>4,845</td>
<td>4,167</td>
<td>5,086</td>
<td>5,118</td>
</tr>
<tr>
<td>Salmon</td>
<td>65,368</td>
<td>77,609</td>
<td>73,324</td>
<td>75,701.00</td>
<td>55,680</td>
<td>57,725</td>
<td>89,836</td>
<td>104,478</td>
<td>133,519</td>
<td>114,509</td>
</tr>
<tr>
<td>Sea reared Trout</td>
<td>1,667</td>
<td>1,933</td>
<td>2,000</td>
<td>648.00</td>
<td>648</td>
<td>440</td>
<td>500</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Freshwater Trout</td>
<td>2,579</td>
<td>1,960</td>
<td>1,934</td>
<td>1,784.00</td>
<td>2,147</td>
<td>2,147</td>
<td>1,962</td>
<td>1,934</td>
<td>1,971</td>
<td>1,590</td>
</tr>
<tr>
<td>Others</td>
<td>506</td>
<td>460</td>
<td>399</td>
<td>322.00</td>
<td>507</td>
<td>546</td>
<td>266</td>
<td>105</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Finfish Value</td>
<td>71,994</td>
<td>83,974</td>
<td>81,125</td>
<td>84,142</td>
<td>62,243</td>
<td>64,061</td>
<td>97,409</td>
<td>110,684</td>
<td>140,576</td>
<td>121,217</td>
</tr>
<tr>
<td>Aquaculture Value</td>
<td>106,778</td>
<td>122,769</td>
<td>128,449</td>
<td>131,118</td>
<td>117,415</td>
<td>116,110</td>
<td>148,666</td>
<td>167,719</td>
<td>199,928</td>
<td>179,629</td>
</tr>
<tr>
<td>Seaweed</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td>42</td>
<td>70</td>
<td>70</td>
<td>50</td>
<td>41</td>
<td>40</td>
</tr>
</tbody>
</table>
Appendix 2: Aquaculture Employment and Production by Culture Groups and FLAG Regions in 2018, Using Alternative Sample Based Estimates

<table>
<thead>
<tr>
<th>Variables</th>
<th>Total FT Male</th>
<th>Total FT Female</th>
<th>Total PT Male</th>
<th>Total PT Female</th>
<th>Total Casual Male</th>
<th>Total Casual Female</th>
<th>Total Employed</th>
<th>Total FTE</th>
<th>Total PU Count</th>
<th>Total Vol</th>
<th>Total Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total for 2018</td>
<td>671</td>
<td>40</td>
<td>405</td>
<td>50</td>
<td>729</td>
<td>54</td>
<td>1948</td>
<td>1073.9</td>
<td>283</td>
<td>37,205</td>
<td>178,988,481</td>
</tr>
<tr>
<td>Bottom Mussel</td>
<td>51</td>
<td>3</td>
<td>32</td>
<td>0</td>
<td>25</td>
<td>1</td>
<td>108</td>
<td>74.3</td>
<td>29</td>
<td>4,696</td>
<td>6,024,218</td>
</tr>
<tr>
<td>Bottom Oyster</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>480</td>
<td>17</td>
<td>505</td>
<td>89.2</td>
<td>13</td>
<td>1196</td>
<td>1,376,150</td>
</tr>
<tr>
<td>Caged Salmon</td>
<td>125</td>
<td>2</td>
<td>48</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>179</td>
<td>153.0</td>
<td>16</td>
<td>11,983</td>
<td>114,509,120</td>
</tr>
<tr>
<td>Minor Finfish</td>
<td>11</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>17</td>
<td>13.3</td>
<td>5</td>
<td>557</td>
<td>1,590,000</td>
</tr>
<tr>
<td>Other Minor Cultures</td>
<td>4</td>
<td>2</td>
<td>7</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>31</td>
<td>13.8</td>
<td>9</td>
<td>126</td>
<td>347,400</td>
</tr>
<tr>
<td>Rope Mussel</td>
<td>73</td>
<td>7</td>
<td>85</td>
<td>8</td>
<td>46</td>
<td>9</td>
<td>228</td>
<td>135.7</td>
<td>56</td>
<td>9,192</td>
<td>5,941,667</td>
</tr>
<tr>
<td>Salmon Hatchery</td>
<td>27</td>
<td>3</td>
<td>9</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>47</td>
<td>36.5</td>
<td>10</td>
<td>237</td>
<td>4,693,321</td>
</tr>
<tr>
<td>Trestled Oyster</td>
<td>377</td>
<td>23</td>
<td>217</td>
<td>30</td>
<td>163</td>
<td>23</td>
<td>833</td>
<td>558.0</td>
<td>145</td>
<td>10,161</td>
<td>44,506,603</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FLAGS</th>
<th>Total PU</th>
<th>Total FTE</th>
<th>Total Employed</th>
<th>Total Volume</th>
<th>Total Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORTH</td>
<td>58</td>
<td>269</td>
<td>469</td>
<td>6,066</td>
<td>38,127,269</td>
</tr>
<tr>
<td>NORTHEAST</td>
<td>10</td>
<td>52</td>
<td>65</td>
<td>2,160</td>
<td>3,940,751</td>
</tr>
<tr>
<td>NORTHWEST</td>
<td>32</td>
<td>109</td>
<td>217</td>
<td>4,067</td>
<td>43,920,211</td>
</tr>
<tr>
<td>SOUTH</td>
<td>48</td>
<td>143</td>
<td>225</td>
<td>9,465</td>
<td>21,619,250</td>
</tr>
<tr>
<td>SOUTHEAST</td>
<td>32</td>
<td>192</td>
<td>245</td>
<td>7,264</td>
<td>22,988,829</td>
</tr>
<tr>
<td>SOUTHWEST</td>
<td>53</td>
<td>150</td>
<td>418</td>
<td>4,357</td>
<td>24,415,016</td>
</tr>
<tr>
<td>WEST</td>
<td>50</td>
<td>158</td>
<td>324</td>
<td>3,826</td>
<td>23,977,154</td>
</tr>
<tr>
<td>Grand Total</td>
<td>283</td>
<td>1,074</td>
<td>1,963</td>
<td>37,206</td>
<td>178,988,481</td>
</tr>
</tbody>
</table>
Appendix 3: Aquaculture Economic Data; 2009 to 2017 (2018 Projection), Using DCF Data Estimates

Aquaculture Economic performance 2009 to 2018

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Turnover</td>
<td>106,566,401</td>
<td>122,549,552</td>
<td>128,481,409</td>
<td>130,349,969</td>
<td>117,724,288</td>
<td>116,298,661</td>
<td>148,594,293</td>
<td>167,724,372</td>
<td>200,017,543</td>
<td>178,988,481</td>
<td></td>
</tr>
<tr>
<td>Total income</td>
<td>108,991,580</td>
<td>124,195,520</td>
<td>139,387,364</td>
<td>136,543,333</td>
<td>118,741,434</td>
<td>126,521,383</td>
<td>154,505,319</td>
<td>176,106,777</td>
<td>234,990,748</td>
<td>184,367,494</td>
<td></td>
</tr>
<tr>
<td>Mean Wage FTE</td>
<td>25,746</td>
<td>28,774</td>
<td>24,520</td>
<td>39,651</td>
<td>26,268</td>
<td>30,015</td>
<td>31,395</td>
<td>27,134</td>
<td>26,150</td>
<td>30,826</td>
<td></td>
</tr>
<tr>
<td>Imputed value of unpaid labour</td>
<td>2,276,923</td>
<td>945,322</td>
<td>2,082,785</td>
<td>2,396,209</td>
<td>1,347,506</td>
<td>1,789,891</td>
<td>1,517,451</td>
<td>1,416,301</td>
<td>852,315</td>
<td>1,991,864</td>
<td></td>
</tr>
<tr>
<td>Energy costs</td>
<td>1,748,193</td>
<td>3,300,105</td>
<td>6,070,959</td>
<td>10,186,902</td>
<td>11,053,024</td>
<td>3,782,682</td>
<td>4,160,373</td>
<td>4,988,212</td>
<td>2,639,931</td>
<td>5,384,610</td>
<td></td>
</tr>
<tr>
<td>Raw material costs: Livestock costs</td>
<td>10,872,951</td>
<td>7,614,269</td>
<td>5,351,171</td>
<td>13,704,060</td>
<td>14,632,886</td>
<td>14,678,690</td>
<td>28,504,784</td>
<td>16,886,284</td>
<td>14,280,006</td>
<td>18,109,745</td>
<td></td>
</tr>
<tr>
<td>Raw material costs: Feed costs</td>
<td>28,694,758</td>
<td>25,515,930</td>
<td>27,744,967</td>
<td>22,299,924</td>
<td>23,465,062</td>
<td>24,903,003</td>
<td>20,100,628</td>
<td>36,196,864</td>
<td>31,099,907</td>
<td>21,395,466</td>
<td></td>
</tr>
<tr>
<td>Repair and maintenance</td>
<td>7,657,880</td>
<td>5,778,029</td>
<td>7,291,398</td>
<td>10,551,902</td>
<td>11,409,961</td>
<td>7,034,966</td>
<td>9,412,331</td>
<td>9,721,112</td>
<td>7,048,015</td>
<td>8,130,264</td>
<td></td>
</tr>
<tr>
<td>Other operational costs</td>
<td>25,996,863</td>
<td>34,794,993</td>
<td>39,011,346</td>
<td>18,633,293</td>
<td>26,211,630</td>
<td>25,238,866</td>
<td>29,140,747</td>
<td>33,084,166</td>
<td>18,099,786</td>
<td>8,467,583</td>
<td></td>
</tr>
<tr>
<td>Depreciation of capital</td>
<td>4,503,779</td>
<td>13,288,893</td>
<td>5,667,882</td>
<td>8,056,174</td>
<td>6,926,407</td>
<td>5,028,579</td>
<td>9,132,866</td>
<td>5,745,397</td>
<td>9,057,950</td>
<td>8,467,583</td>
<td></td>
</tr>
<tr>
<td>Financial costs, net</td>
<td>1,368,332</td>
<td>2,422,518</td>
<td>847,989</td>
<td>2,097,332</td>
<td>3,025,541</td>
<td>6,367,228</td>
<td>8,979,875</td>
<td>4,877,908</td>
<td>3,084,344</td>
<td>1,283,733</td>
<td></td>
</tr>
<tr>
<td>Extraordinary costs, net</td>
<td>-</td>
<td>29,729</td>
<td>-</td>
<td>-</td>
<td>365,602</td>
<td>6,997,236</td>
<td>40,242,642</td>
<td>49,140,611</td>
<td>47,924,575</td>
<td>5,308,483</td>
<td></td>
</tr>
<tr>
<td>Total value of assets</td>
<td>168,710,773</td>
<td>170,907,154</td>
<td>142,624,637</td>
<td>189,743,450</td>
<td>165,109,019</td>
<td>199,768,441</td>
<td>175,865,728</td>
<td>190,942,888</td>
<td>194,431,686</td>
<td>243,967,373</td>
<td></td>
</tr>
<tr>
<td>Debt</td>
<td>65,252,054</td>
<td>105,570,813</td>
<td>101,691,152</td>
<td>125,647,212</td>
<td>85,266,379</td>
<td>85,988,019</td>
<td>76,138,898</td>
<td>84,362,877</td>
<td>66,353,403</td>
<td>103,021,606</td>
<td></td>
</tr>
<tr>
<td>Raw material volume: Livestock</td>
<td>25,260</td>
<td>23,851</td>
<td>21,903</td>
<td>15,221</td>
<td>15,598</td>
<td>15,866</td>
<td>17,592</td>
<td>15,612</td>
<td>14,083</td>
<td>9,958,020</td>
<td></td>
</tr>
<tr>
<td>Raw material volume: Feed</td>
<td>16,641</td>
<td>20,486</td>
<td>16,784</td>
<td>16,165</td>
<td>11,049</td>
<td>17,030</td>
<td>13,333</td>
<td>23,883</td>
<td>22,576</td>
<td>14,802</td>
<td></td>
</tr>
<tr>
<td>Total sales volume</td>
<td>47,408</td>
<td>46,662</td>
<td>44,789</td>
<td>36,197</td>
<td>34,667</td>
<td>31,659</td>
<td>40,128</td>
<td>44,018</td>
<td>45,726</td>
<td>37,206</td>
<td></td>
</tr>
</tbody>
</table>
Economic Indicator

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total sales volume</td>
<td>47,408</td>
<td>46,662</td>
<td>44,789</td>
<td>36,197</td>
<td>34,667</td>
<td>31,659</td>
<td>40,128</td>
<td>44,018</td>
<td>45,726</td>
<td>37,206</td>
</tr>
<tr>
<td>Total income</td>
<td>108,991,580</td>
<td>124,195,520</td>
<td>139,387,364</td>
<td>136,543,333</td>
<td>118,741,434</td>
<td>126,521,383</td>
<td>154,505,319</td>
<td>176,106,777</td>
<td>234,990,748</td>
<td>184,367,494</td>
</tr>
<tr>
<td>Gross Added Value (GVA)</td>
<td>41,700,316</td>
<td>59,331,794</td>
<td>76,064,597</td>
<td>51,924,174</td>
<td>45,251,507</td>
<td>53,180,386</td>
<td>69,049,708</td>
<td>86,105,227</td>
<td>150,927,429</td>
<td>123,812,856</td>
</tr>
<tr>
<td>Labour productivity</td>
<td>42,726</td>
<td>62,326</td>
<td>79,361</td>
<td>54,308</td>
<td>47,311</td>
<td>56,491</td>
<td>70,219</td>
<td>83,879</td>
<td>147,101</td>
<td>114,992</td>
</tr>
</tbody>
</table>
Notes